

# Research Journal of Pharmaceutical, Biological and Chemical

Sciences

### Synthesis, characterization and invitro antimicrobial activity of some novel 3substituted amino 2-mercapto 5,6,7,8-tetra hydro benzo(b)thieno-(2,3-d)pyrimidine-4-(3h)-ones.

#### Kavitha PN\*, P Vijayanthimala, J Saravanan, S Mohan

Department of Pharmaceutical Chemistry, PES College of Pharmacy, Bangalore-50, Karnataka, India.

#### ABSTRACT

An ecofriendly synthesis of 3-substituted amino 2-mercapto 5,6,7,8- tetrahydro -benzo (b) thieno-(2,3d)-pyrimidine-4-(3H)-ones was carried out.Condensed quinazolines like thiadiazoloquinazolines & the corresponding bioisostere thiadiazolothienopyrimidines were found to be biologically active molecules, 2substituted 1, 3, 4-thiadiazolo (2,3-b) quinazolin-4-ones was reported to possess activity from our laboratories. Therefore an attempt was made to utilize the concept of bio-isosterism for the synthesis of 3-substituted amino 2-mercapto-5,6,7,8-tetrahydro(b) benzo thieno(2,3-d) pyrimidin-4(3H)-ones for activity. The 3- amino 2mercapto-5,6,7,8-tetrahydro benzo(b)thieno (2,3-d) pyrimidin-4(3H)-ones was further treated with various substituted aromatic aldehydes. The new synthesized compounds were characterized by MP, TLC, IR, <sup>1</sup>H NMR and Mass spectra. These synthesized compounds were subjected to anti-microbial studies using few Gram-positive, Gram-negative and fungal organisms. The standard drug used for anti-bacterial activity is Ampicillin and the standard drug used for anti-fungal activity is Miconazole nitrate. Among the compounds tested, three compounds exhibited significant antimicrobial activity.

Key words: Synthesis, Antimicrobial activity, Thienopyrimidinones, Eco-friendly, Bio-isosterism.

\*Corresponding author Email: pnkavi@gmail.com



#### INTRODUCTION

Thiephene and pyrimidine derivatives have a variety of pharmacological activities [1,2]. Thienopyrimidines have been shown to possess a variety of pharmacological activities like anti-microbial, anti-inflammatory and antimalarial activities [3-5]. Condensed Quinazoline and the corresponding bioisostere thieno pyrimidine were found to be biologically active molecules. There has been increasing interest in the chemistry of 4(3H)-Quinazolines [6] because of their biological significance. Many of them show antifungal, antibacterial, anticancer, anti-inflammatory activities. Therefore, it was thought of interest to utilize the concept of Bioisosterism for the synthesis of some Thienopyrimidin-4-ones. Thienopyrimidinones were synthesized as reported procedure [7,8]. The synthesized compounds were evaluated for their anti-microbial activity.

#### MATERIAL AND METHODS

#### Chemicals

All the chemicals were procured from S. D. Fine chem.Ltd, Bilaspur

Preparation of 2-amino-3-carbethoxy 4, 5,6,7-tetrahydrobenzo(b) thiophene [I]

A mixture of Cyclohexanone, Ethylcyanoacetate, Sulphur in 40ml of ethanol was warmed to a temperature between  $40^{0}$ - $50^{\circ}$ C and then diethylamine 4.0ml was added dropwise till the sulphur dissolved into the solution. The stirring was continued for one hour till the solid separated. The reaction was cooled to room temperature and filtered. The product was recrystallized using ethanol. M. P of pure product  $: 112^{0}$ C

Preparation of Methyl N- [3-carbethoxy (4, 5, 6, 7-tetra hydro benzo) thienyl] dithiocarbamate [II]:

To a vigorously stirred solution of **[I]** (4.5 g, 0.02 mol) in dimethylsulphoxide (10 ml) at room temperature, carbondisulphide (1.6 ml;0. 26 mol) and aqueous sodium hydroxide (1.2 ml; 20 mol) were added dropwise. After 30 min dimethylsulphate (2.5 g; 0.25mol) was added dropwise under cooling in an ice bath. Stirring was continued for 3 h, and then the reaction mixture was poured into ice-water mixture. The precipitated solid was filtered, dried and recrystallized from ethanol-chloroform mixture to give pure product. M. P of pure product :  $134^{\circ}C$ 

Preparation of 3-amino-2-mercapto-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d] pyrimidin -4(3H)-one[III]:

A Solution of [II] (3.2 g, 0.01 mol) in isopropanol (10 ml) was treated with hydrazine hydrate (99%; 4.3 g; 0. 1mol) and heated under reflux on water bath until the methylmercaptan evolution ceased. After cooling the solid obtained was filtered, dried and recrystallized from ethanol-chloroform mixture (1:1) to yield a white crystalline product. M. P. of pure product :  $245^{\circ}C$ 

All the products were subjected to analysis by different spectral methods like, IR, NMR and mass and the structural interpretation was carried out.

#### **Antimicrobial studies**

All the synthesized compounds were screened for their antibacterial and antifungal activity by agar diffusion method at a concentration of 50µg/ml against Proteus vulgaris, Bacillus subtilis, Klebsiella pneumonia, Serratia Aspergillus niger and Candida albicans. After 24h of drug addition, zone of inhibition was measured in mm and recorded. Ampicillin, Mecanazole nitrate at 50 µg/ml were used as standards in the experiment [9,10].



#### **RESULTS AND DISCUSSION**

From the IR, <sup>1</sup>H NMR and Mass spectra obtained, characterization of data has been done and given in table 1, 2, 3, 4 and 5. The IR spectrum of the compound III showed distinct peaks at 3335 cm<sup>-1</sup>, 3117 cm<sup>-1</sup> ( $-NH^2$ ),1684 cm<sup>-1</sup> (C=O),1558 cm<sup>-1</sup>,1496 cm<sup>-1</sup> (Ar-C=C). The difference in the TLC spots, confirm the formation of 3-amino-2-mercapto-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d]pyrimidin-4(3H)-one(III). The next step was the synthesis of schiff bases carried out by the reaction of 3-amino-2-mercapto-5,6,7,8-tetrahydrobenzo(b)thieno[2,3-d] pyrimidin-4(3H)-one with substituted benzaldehydes in the presence of glacial acetic acid and ethanol is used as a solvent to yield ten schiff bases. Further the IR peaks confirmed the formation of schiff bases. The IR peaks are reported in table. Substantial proof for the formation of all these new title compounds has been provided by the difference in the melting point and R<sub>f</sub> values (TLC).



 Table 1: Physical data of 3-amino-2-mercapto-5, 6,7,8-tetrahydrobenzo(b) thieno[2,3-d]

 pyrimidin-4(3H)-one (III)

| Comp. | Mol.                  | M.W(g) | Recrystalization                   | M.P  | % Yield | TLC Solvent System        |
|-------|-----------------------|--------|------------------------------------|------|---------|---------------------------|
| Code  | Formula               |        | Solvent                            | (°C) |         |                           |
|       | $C_{10}H_{11}N_3OS_2$ | 253    | Ethanol-chloroform<br>mixture(1:1) | 245  | 74.62   | Benzene:Methanol<br>(9:1) |

2010





### Table 2: Physical data of 3-(substituted- (phenylazo methine))2-mercapto-5,6, 7, 8-tetra hydro benzo (b) thieno[2,3-d] pyrimidin-4(3H)-one

| Comp. |             | Mol.                                                           | M.W  | M.P  | o( )(* 1 1 | Recryatallization                     |                                                       |  |
|-------|-------------|----------------------------------------------------------------|------|------|------------|---------------------------------------|-------------------------------------------------------|--|
| Code  | к           | formula                                                        | (g)  | (°C) | % Yield    | solvent                               | TLC Solvent System                                    |  |
| Illa  | 2-hydroxy   | $C_{17}H_{15}N_3O_2S_2$                                        | 357  | 185  | 71.7       | DMF and $H_2O$                        | C <sub>2</sub> H <sub>5</sub> OH: CH <sub>3</sub> OH: |  |
|       |             |                                                                |      |      |            | Mixture                               | H <sub>2</sub> O                                      |  |
|       |             |                                                                |      |      |            |                                       | (6:2:2)                                               |  |
| IIIb  | 4-hydroxy   | $C_{17}H_{15}N_3O_2S_2$                                        | 357  | 119  | 78.7       | DMF and $H_2O$                        | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       |             |                                                                |      |      |            | Mixture                               | H <sub>2</sub> O                                      |  |
|       |             |                                                                |      |      |            |                                       | (6:2:2)                                               |  |
| IIIc  | 2-nitro     | $C_{18}H_{17}N_3O_3S_2$                                        | 387  | 220  | 63.2       | DMF and $H_2O$                        | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       |             |                                                                |      |      |            | Mixture                               | H <sub>2</sub> O                                      |  |
|       |             |                                                                |      |      |            |                                       | (6:2:2)                                               |  |
| IIId  | 3-nitro     | $C_{17}H_{14}N_4O_3S_2$                                        | 386  | 229  | 69.4       | DMF and H <sub>2</sub> O              | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       |             |                                                                |      |      |            | Mixture                               | H <sub>2</sub> O                                      |  |
|       |             |                                                                |      |      |            |                                       | (6:2:2)                                               |  |
| llle  | 4-methoxy   | $C_{18}H_{17}N_3O_2S_2$                                        | 371  | 162  | 71.2       | DMF and H <sub>2</sub> O              | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       |             |                                                                |      |      |            | Mixture                               | $H_2O$                                                |  |
|       | 0 11        |                                                                | 0.07 | 000  | (0.01      |                                       | (6:2:2)                                               |  |
| IIIf  | 3-methoxy,  | $C_{18}H_{17}N_3O_3S_2$                                        | 387  | 220  | 63.21      | DIVIF and H <sub>2</sub> O            | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       | 4-hydroxy   |                                                                |      |      |            | wixture                               | $H_2U$                                                |  |
|       |             |                                                                | 257  | 110  | 70.7       | DME and U.O.                          |                                                       |  |
| ing   | 3,4,5 – Tri | $C_{17}\Pi_{15}\Pi_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$ | 357  | 119  | /0./       | DIVIF and H <sub>2</sub> O            | $C_2H_5OH$ : $CH_3OH$ :                               |  |
|       | methoxy     |                                                                |      |      |            | wixture                               | $\Pi_2 \cup$                                          |  |
| IIIb  |             |                                                                | 276  | 140  | 04 1       | DME and U.O.                          |                                                       |  |
|       | 2-chloro    | C17H14N3O32CI                                                  | 370  | 100  | 00.1       | Divir anu n <sub>2</sub> 0<br>Mixturo |                                                       |  |
|       |             |                                                                |      |      |            | IVIIALUIE                             | (6.2.2)                                               |  |
|       |             | CH. N.OS.CI                                                    | 376  | 1/0  | 76.5       | DME and H <sub>2</sub> O              |                                                       |  |
|       | 4-chloro    | 01/11/414300201                                                | 570  | 140  | 70.5       | Mixture                               | H <sub>2</sub> O                                      |  |
|       |             |                                                                |      |      |            | WINCO                                 | (6:2:2)                                               |  |
|       | 4-Dimethyl  | C10H20N4OS2                                                    | 384  | 190  | 85.4       | DMF and H <sub>2</sub> O              | C2H₅OH: CH2OH.                                        |  |
| IIIj  |             | 019. 20. 4002                                                  |      |      |            | Mixture                               | H <sub>2</sub> O                                      |  |
|       | amino       |                                                                |      |      |            |                                       | (6:2:2)                                               |  |

### Table 3: Spectral data of 3-amino-2-mercapto-5, 6,7,8-tetrahydrobenzo(b) thieno[2,3-d]pyrimidin-4(3H)-one (III)

| Comp.<br>Code | IR(KBr)(cm <sup>-1</sup> )                                                                                                                              |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111           | 3335 cm <sup>-1</sup> ,3117 cm <sup>-1</sup> (-NH <sup>2</sup> ),1684 cm <sup>-1</sup><br>(C=O ),1558 cm <sup>-1</sup> ,1496 cm <sup>-1</sup> (Ar-C=C). |



## Table 4: Spectral data of 3-(substituted- (phenylazo methine))2-mercapto-5,6, 7, 8 tetra hydro benzo (b) thieno[2,3-d] pyrimidin-4(3H)-one

| Comp. |                       |                                                                                                                                                           | <sup>1</sup> H NMR                  | MASS               |
|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|
| Code  | n                     |                                                                                                                                                           | (DMSO)(δ)                           | M⁺                 |
| IIIa  | 2-hydroxy             | 3275 cm <sup>-1</sup> (NH);1635 cm <sup>-1</sup> (s)(C=O);1558<br>cm <sup>-1</sup> (s)(N=CH);1522 cm <sup>-1</sup> (ArC=);<br>3422 cm <sup>-1</sup> (OH). |                                     | [294] <sup>+</sup> |
| IIIb  | 4-hydroxy             | 3316 cm <sup>-1</sup> (NH);1635 cm <sup>-1</sup> (s) (C=O);3422<br>cm <sup>-1</sup> (OH);<br>1522 cm <sup>-1</sup> (Ar-C=)                                |                                     |                    |
| llic  | 2-nitro               | 3422(N-H);1684(s),(C=O),1576, 1508(Ar-<br>C=C) 1558(N=CH)<br>1520(NO <sub>2</sub> )                                                                       |                                     |                    |
|       | 3-nitro               | $1560 \text{ cm}^{-1}, 1352 \text{ cm}^{-1}$ (s) (Ar-NO <sub>2</sub> ); 1662                                                                              | δ=1.62(d) (2H) (-CH <sub>2</sub> )  |                    |
|       |                       | (N=CH).                                                                                                                                                   | δ=1.62(t) (2H) (-CH <sub>2</sub> )  |                    |
|       |                       |                                                                                                                                                           | δ=2.55(t) (2H) (-CH <sub>2</sub> )  |                    |
|       |                       |                                                                                                                                                           | δ=2.55(d) (2H) (-CH <sub>2</sub> )  |                    |
| IIId  |                       |                                                                                                                                                           | δ=1.55(s) (1H) (-SH)                |                    |
|       |                       |                                                                                                                                                           | δ=7.64(d) (1H) (Ar-H)               |                    |
|       |                       |                                                                                                                                                           | δ=7.14(t) (1H) (Ar-H)               |                    |
|       |                       |                                                                                                                                                           | δ=6.89(d) (1H)(Ar-H)                |                    |
|       |                       |                                                                                                                                                           | δ=7.12 (s) (1H) (Ar-H)              |                    |
|       | 4-methoxy             | 2926(NH);1670,                                                                                                                                            | δ=1.62 (d) (2H) (-CH <sub>2</sub> ) |                    |
|       |                       | 1635(C=O);1603, 1558(Ar-C=C);                                                                                                                             | δ=1.62 (t) (2H) (-CH <sub>2</sub> ) |                    |
|       |                       |                                                                                                                                                           | δ=2.55 (t) (2H) (-CH <sub>2</sub> ) |                    |
|       |                       |                                                                                                                                                           | δ=2.55 (d) (2H) (-CH <sub>2</sub> ) |                    |
| llle  |                       |                                                                                                                                                           | δ=1.55(s) (1H) (-SH)                |                    |
|       |                       |                                                                                                                                                           | δ=6.77(d) (1H) (Ar-H)               |                    |
|       |                       |                                                                                                                                                           | δ=7.15(d) (1H) (Ar-H)               |                    |
|       |                       |                                                                                                                                                           | δ=6.77(d) (1H)(Ar-H)                |                    |
|       |                       |                                                                                                                                                           | δ=7.15 (d) (1H) (Ar-H)              |                    |
| JIIF  | 3-methoxy,            | 3275(NH);1635(s)(C=O);                                                                                                                                    |                                     |                    |
|       | 4-hydroxy             | (Ar-C=C);3422(OH)                                                                                                                                         |                                     |                    |
| IIIg  | 3,4,5 –Tri<br>methoxy | 3308(NH);1647(C=O);<br>1508(s)(Ar-C=C); 1595(s)(N=CH)                                                                                                     |                                     |                    |

April – June



| IIIh | 2-chloro            | 2851(C-H);3250(s) (NH);1647(s)(C=O);<br>1608(N=C-H)1496(s) (Ar-C=C),767(C=CI) | <br> |
|------|---------------------|-------------------------------------------------------------------------------|------|
| IIIi | 4-chloro            | 3337(N-H);3032(C-<br>H),1647(C=O),1603(N=C-H);858(C-<br>Cl),1522(Ar-C=C)      | <br> |
| IIIj | 4-Dimethyl<br>amino | 3265(NH);1662(s)(C=O);1489 , 1361(Ar-<br>C=C); 1608(s)(N=CH)                  | <br> |

#### Table 5: Antimicrobial activity of 3-(substituted- (phenylazo methine))2-mercapto-5,6, 7,8-tetra hydro benzo (b) thieno[2,3-d] pyrimidin-4(3H)-one

| Comp. Code | Zone of Inhibition in mm. |            |             |          |          |             |  |  |
|------------|---------------------------|------------|-------------|----------|----------|-------------|--|--|
|            | P.Vulgaris                | B.subtilus | K.pneumonia | Serratia | A. niger | C. albicans |  |  |
| Illa       | NA                        | 8          | 7           | 10       | NA       | NA          |  |  |
| IIIb       | 12                        | 10         | NA          | 9        | 9        | 10          |  |  |
| IIIc       | 8                         | 7          | 6           | 10       | 12       | 8           |  |  |
| IIId       | NA                        | NA         | NA          | NA       | NA       | NA          |  |  |
| Ille       | NA                        | NA         | NA          | NA       | 10       | 7           |  |  |
| IIIf       | 12                        | 10         | 9           | 7        | 8        | 7           |  |  |
| IIIg       | 9                         | 10         | 12          | NA       | 7        | 12          |  |  |
| IIIh       | NA                        | NA         | NA          | NA       | 12       | 10          |  |  |
| IIIi       | NA                        | NA         | 9           | 7        | 8        | NA          |  |  |
| IIIj       | 9                         | 10         | 12          | 10       | 10       | 8           |  |  |
| Ampicillin | 20                        | 15         | 20          | 20       |          |             |  |  |
| Miconazole |                           |            |             |          | 20       | 15          |  |  |

NA = Not active.

#### CONCLUSION

10 new schiff bases were also synthesized as per the scheme. The IR spectra of all compounds, NMR and the mass spectra of compound were studied and ascertained. All the compounds were also screened for antibacterial and anti-fungal activities. From the screening results it was observed that, the compound with 2nitrobenzaldehyde substituted schiff base (IIIc) showed moderate antibacterial activity against gram-positive, gram-negative organisms and fungi. The compound (IIIf) and (IIIj) with 3-methoxy,4-hydroxy & pdimethylaminophenylbenzaldehyde substituted schiff bases substitution showed moderate activity against gram positive and gram negative organism and fungi. The compound with 2-chlorobenzaldehyde substituted schiff bases and (IIIh) substitution showed moderate activity against Aspergillus niger and cladosporium and low activity against gram positive and gram-negative microorganisms.

RJPBCS Volume 1 Issue 2 April – June 2010



#### REFERENCES

- [1] Hagen Helmut, Becke Friedrich. Chem Abstr 1971;74:88033z.
- [2] Takamizawa. Chem Abstr 1971; 74:88038e.
- [3] Nitinkumar S Shetty, Ravi S, Lamanilmtiyaz Ahmed, M. Khazi. J Chem Sci 2009; 121: 301-307
- [4] Nabil H Ouf, Abd El-Galil E. Amr Monatshefte für Chemie 2008;139:579-585
- [5] A Rosowsky, KKN Chen, M Lin. J Med Chem 1973;16 (3):191–194
- [6] Edgar S Schipper. Chem Abstr 1966; 65:15399.
- [7] MM Heravi, Y Sh Beheshtiha, H A Oskooie. Ind J Chem1998;37B:694-696
- [8] V Radha Rani, N Srinivas, M Radha Kishan. Green Chemistry 2001; 3: 305–306
- [9] Sign PP, Ajit YS, Rao S. Expt Clin Pharmacol 1985; 5(8): 601
- [10] Barbara Schnell, Wolfram Krenn, Kurt Faber. J Chem Soc Perkin Trans 2000; 24: 4382 4389.